Infrastructure Technology  «Prev  Next»

Lesson 1

How Infrastructure Technologies impact e-business

Infrastructure technologies lie at the core of your e-business solution. As you learned in the previous module, infrastructure technologies act as the foundation upon which all other e-business services are built. One of the most important infrastructure technologies is networking. Why? It enables computers (and thus people) to share information across physically disparate computers and networks. This module focuses on the various infrastructure technologies that make e-business viable. By the end of this module, you will be able to do the following:
  1. Describe the overall importance of networking to e-business
  2. Describe the functions of LANs and WANs
  3. Distinguish among the Internet, VPNs, intranets, and extranets
  4. Describe the functions of switches, bridges, and routers
  5. Describe Internet multicasting

Managing IT Infrastructure

In an e-business, the information technology infrastructure of a company is the foundation for business success. The information technology infrastructure must be carefully managed to support the business goals of the company and should be perceived internally as a strategic asset. There are several ways in which the management and perception of the role of a company's IT organization is critical to success. In traditional companies, the IT group is responsible for managing internal processes and is used to support or maintain business functions. While IT groups are often treated as overhead and run as cost centers in traditional businesses, the IT organization in successful e-businesses is viewed as a revenue generator and treated as a competitive asset allowing innovation within the organization to drive competitive advantage and help reduce costs.
The reliability of the infrastructure is also paramount and must be carefully managed. As companies become more reliant on online processes, the potential consequences to a company and its business partners of even a temporary loss of service can be devastating. For example, a survey of companies in 2011 showed that for 43% of the companies surveyed, system downtime would cost them up to $53k per hour, 29% of the respondents would incur a loss of up to $251k per hour, and 23% would incur a loss of up to $1.1m per hour.

IT infrastructure refers to the composite hardware, software, network resources and services required for the existence, operation and management of an enterprise IT environment. It allows an organization to deliver IT solutions and services to its employees, partners and/or customers and is usually internal to an organization and deployed within owned facilities.

Limitations of IPv4

The current version of IP (known as version 4 or IPv4) has not changed substantially since Request for Comments (RFC) 791, which was published in 1981. IPv4 has proven to be robust, easily implemented, and interoperable. It has stood up to the test of scaling an internetwork to a global utility the size of today's Internet. This is a tribute to its initial design. However, the initial design of IPv4 did not anticipate the following:
  1. The recent exponential growth of the Internet and the impending exhaustion of the IPv4 address space Although the 32-bit address space of IPv4 allows for 4,294,967,296 addresses, previous and current allocation practices limit the number of public IPv4 addresses to a few hundred million. As a result, public IPv4 addresses have become relatively scarce, forcing many users and some organizations to use a NAT to map a small number of public IPv4 addresses to multiple private IPv4 addresses. Although NATs promote reuse of the private address space, they violate the fundamental design principle of the original Internet that all nodes have a unique, globally reachable address, thus preventing true end-to-end connectivity for all types of networking applications. Additionally, the rising prominence of Internet-connected devices and appliances ensures that the public IPv4 address space will eventually be depleted.
  2. The need for simpler configuration Most current IPv4 implementations must either be manually configured or use a stateful address configuration protocol such as Dynamic Host Configuration Protocol (DHCP). With more computers and devices using IP, there is a need for a simpler and more automatic configuration of addresses and routing configuration that does not rely on the administration of a DHCP infrastructure.
  3. The requirement for security at the Internet layer Private communication over a public medium such as the Internet requires cryptographic services that protect the data being sent from being viewed or modified in transit. Although a standard now exists for providing security for IPv4 packets (known as Internet Protocol security, or IPsec), this standard is optional for IPv4, and additional security solutions, some of which are proprietary, are prevalent.
  4. The need for better support for prioritized and real-time delivery of data: Although standards for prioritized and real-time delivery of data [sometimes referred to as Quality of Service (QoS)] exist for IPv4, real-time traffic support relies on the 8 bits of the historical IPv4 Type of Service (TOS) field and the identification of the payload, typically using a User Datagram Protocol (UDP) or (TCP) Transmission Control Protocol port. Unfortunately, the IPv4 TOS field has limited functionality and, over time, has been redefined and has different local interpretations. The current standards for IPv4 use the TOS field to indicate a Differentiated Services Code Point (DSCP), a value set by the originating node and used by intermediate routers for prioritized delivery and handling. Additionally, payload identification that uses a TCP or UDP port is not possible when the IPv4 packet payload is encrypted.

To address these and other concerns, the Internet Engineering Task Force (IETF) has developed a suite of protocols and standards known as IP version 6 (IPv6). This new version, previously called IP The Next Generation (IPng), incorporates the concepts of many proposed methods for updating the IPv4 protocol. IPv6 is designed to have minimal impact on upper-layer and lower-layer protocols and to avoid the random addition of new features. The next lesson demonstrates the overall importance of networking to e-business.

High Availability IT Services